ООО опытно-конструкторское бюро **« СОЛИС »**

ДАТЧИКИ КОНТРОЛЯ РАСХОДА ВОДЫ ДР17, ДР17М ДАТЧИК РАСХОДА

ТУ (СЛДР.265152110.001ТУ)

ТЕХНИЧЕСКОЕ ОПИСАНИЕ ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

1. НАЗНАЧЕНИЕ

Датчики контроля расхода воды ДР (далее по тексту — Датчики), предназначены для использования в технологическом оборудовании и устройствах фасовочного дозирования воды с качеством по СанПин 2.1.4.1074-2001 при температуре от +5°C до +90°C и давлении не более 1,0МПа (10кгс/см²) вне сферы государственного регулирования обеспечения средств измерения.

Датчики имеют герметичные электронные счётные головки, что ликвидирует основной недостаток счётчиков при работе в режиме «пуск-стоп» срыв магнитного сцепления между крыльчаткой и счётным механизмом, увеличивает надёжность за счёт отсутствия движущихся механических элементов счётной головки и позволяет применять в технологическом оборудовании, работающем в сложных условиях эксплуатации при наличии пыли, грязи, непреднамеренных механических воздействий и полного погружения в воду.

Обозначение датчиков контроля расхода воды ДР в документах и при заказе следующее

ДР17x-yy/zz

где:

ДР17 – сокращённое обозначение датчиков расхода;

 х – принимает значение М для модификаций датчика с уменьшенными коэффициентами К1/К2;

уу/zz — величина максимального расхода / условный диаметр входного и выходного отверстий корпуса могут принимать

следующие значения: 3/15, 5/20

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

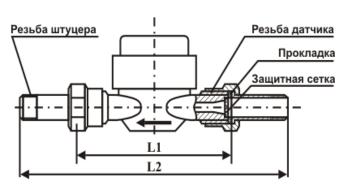


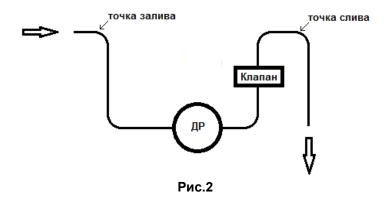
Рис.1 Габаритные и присоединительные размеры датчика ДР

Основные параметры датчика (при условиях эксплуатации см. п.6) следующие:

Параметр	ДР17(M)- 3/15	ДР17(M)- 5/20	
Номинальный расход Qn , м³/ч	1,5	2,5	
Наибольший расход Qmax , м³/ч	3	5	
Наименьший расход, Qmin , м³/ч	0,06	0,1	
Погрешность от Qmax до Qt	±2%		
Коэффициенты Датчика К1/К2 для ДР17 , л/имп	0,0126 / 0,0126	0,0241 / 0,0241	
Коэффициенты Датчика К1/К2 для ДР17М , л/имп	0,0063 / 0,0063	0,0121 / 0,0121	
Рабочая температура воды, °С	+5+90		
Температура окружающего воздуха, °С	+5+50		
Рабочее давление воды, МПа	не более 1.0		
Нагрузочная способность импульсных выходов по напряжению, В	не более =24		
по току, мА	не более 20		
Напряжение питания, В	=524		
Потребляемый ток, мА	не более 24		
Потребляемая мощность, Вт			
при Uп=24B при Uп=12B при Uп=5B	не более 0.58 не более 0.29 не более 0.12		
Длина подсоединенного кабеля, м	не менее 2		
Диаметр условного прохода Ду , мм	15	20	
Присоединительная резьба корпуса	G3/4	G1	
Присоединительная резьба штуцера	G1/2	G3/4	
Длина датчика L1 , мм	110	130	
Длина со штуцерами L2 , мм	170	202	
Масса без штуцеров, не более, кг	0,5	0,65	
Материал корпуса счетчика	Латунь		

3. КОМПЛЕКТНОСТЬ ПОСТАВКИ

•	Датчик ДР	1	ШТ.
•	Прокладка	2	шт.
•	Штуцеры и гайки для монтажа	2	шт.
•	Паспорт	1	IIIT


4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- **4.1** Датчик состоит из латунного корпуса с проходными отверстиями соответствующего Ду (15мм или 20мм), внутри которого расположена крыльчатка.
- **4.2** На корпусе закреплена герметичная электронная головка с подсоединённым 6-ти жильным кабелем.
- **4.3** Принцип действия датчика основан на контроле скорости вращения крыльчатки, находящейся в потоке воды, протекающей в корпусе Датчика.
- **4.4** Скорость вращения крыльчатки, пропорциональная мгновенному расходу протекающей воды, считывается закреплённой на корпусе электронной головкой Датчика.
- **4.5** Электронная схема головки обрабатывает входные сигналы от крыльчатки и формирует соответствующие выходные импульсные сигналы и сигналы индикации.
- **4.6** Питание Датчика осуществляется от внешнего источника постоянного тока =5...24В.
- **4.7** Пассивные импульсные выходы Датчика гальванически развязаны от источника питания и друг от друга и представляют из себя электронный аналог «сухого контакта» транзистор NPN с открытым коллектором и открытым эмиттером, позволяющий гибко подключаться к различным входам внешних приборов и устройств.

Внутренняя структура выходов и основные варианты подключения к внешним устройствам показаны в Приложении 1.

5. ПОДГОТОВКА ДАТЧИКА К РАБОТЕ

- **5.1** Перед монтажом датчика рекомендуется провести промывку трубопровода для удаления из него окалины, песка и других загрязнений.
- **5.2** Сварочные работы на подводящих трубопроводах и их опрессовку производить до установки датчика.
- 5.3 Убедившись, что направление потока воды соответствует направлению стрелки на корпусе Датчика, установить Датчик на трубопроводе плотно, без перекосов, с тем, чтобы не было протечек при давлении 1 МПа. Датчик можно устанавливать как горизонтально, так и вертикально, но при этом необходимо обеспечивать постоянное заполнение внутренних полостей корпуса водой при любых режимах работы внешнего оборудования, для чего точки перелива должны располагаться выше уровня датчика (см. Рис. 2).

5.4 Подключить Датчик к внешним устройствам согласно Приложению 1.

6. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

- 6.1 Монтаж датчика должен быть выполнен в соответствии с п. 5.
- 6.2 Датчик может быть использован на участках с расходом воды не ниже Qmin и не выше Qn. Работа на расходах превышающих Qn, допускается только кратковременная. На расходах от Qn до Qmax допускается работа не более 1 часа в сутки.
- 6.3 Подключение Датчика к внешним устройствам должно гарантированно обеспечивать ограничения по нагрузочной способности его выходов согласно п.5.10. Даже кратковременное превышение указанных в п.5.10 максимальных значений напряжения и тока приводит выходы к неисправности.
- **6.4** В трубопроводе должны отсутствовать гидравлические удары и вибрации, должны отсутствовать частицы металла, песка и прочих инородных материалов.
- **6.5** Для повышения срока службы датчика, рекомендуется устанавливать фильтр.
- **6.6** Внутренние полости корпуса Датчиков должны быть всегда заполнены водой.
- **6.7** Напряжение источника питания Датчиков не должно иметь пульсаций и не должно превышать паспортных значений для соответствующих модификаций;

7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 При неизменном и постоянном давлении в трубопроводе и заметном снижении расхода воды необходимо прочистить входной фильтр от засорения, а при появлении протечек в местах соединения Датчика с трубопроводом подтянуть резьбовые соединения или заменить прокладки.
- **7.2** Переднюю панель Датчика при загрязнении протереть сухой полотняной салфеткой.

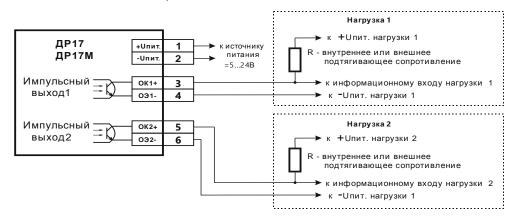
8. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ

Возможные неисправности и способы их устранения приведены в таблице 1.

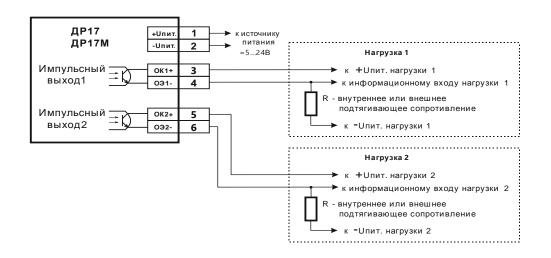
Таблица 1.

Наименование неисправности и её признаки	Вероятная причина	Метод устранения
Вода не проходит через датчик	Засорилась входная сеточка	Промыть сеточку
		Проверить
Вода проходит	Неправильно	правильность
через датчик, но	подсоединены	подсоединения,
датчик не	провода. Обрыв	целостность
работает.	провода.	проводов.
		Заменить датчик.
Показания	Не установлен	Проверить
расхода явно	коэффициент	коэффициент
отличаются от	датчика на	датчика на
реального.	расходомере.	расходомере.

9. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА


- **9.1** Предприятие-изготовитель гарантирует соответствие Датчика указанным в настоящем паспорте требованиям при соблюдении потребителем условий хранения, транспортирования, монтажа и эксплуатации (особенно п.6.2.).
- **9.2** Гарантийный срок эксплуатации в течение 12 месяцев с момента реализации.
- **9.3** Предприятие-изготовитель не несёт гарантийной ответственности, если качество воды не соответствует СанПин 2.1.4.1074-2001.
- **9.4** В течение гарантийного срока эксплуатации устранение заводских дефектов производится бесплатно при условии сохранности пломбы и наличия паспорта.
- **9.5** Доставка Датчиков для ремонта на предприятие-изготовитель осуществляется потребителем.

Датчик расхода воды ДР			
Наименование (модификация)	Коэффициенты Датчика К1/К2		
ДР17-3/15	0,0126 / 0,0126 л/имп.		
ДР17М-3/15	0,0063 / 0,0063 л/имп.		
ДР17-5/20	0,0241 / 0,0241 л/имп.		
ДР17М-5/20	0,0121 / 0,0121 л/имп.		
Nº			
Дата изготовления			
Предприятие-изготовитель	ООО ОКБ «Солис»		
Контактная информация	РФ,600009, г. Владимир,		
	ул. Электрозаводская,1.		
	Тел./факс: (4922) 47-90-22		
	email: office@okbsolis.ru		
	www.okbsolis.ru		


Приложение 1

«Основные варианты подключения датчиков ДР17, ДР17М»

Вариант 1

Вариант 2

Максимальные нагрузочные характеристики импульсных выходов: Umax=24B, Imax =20мА